Discounted Cash Flow Valuation: Basics

Aswath Damodaran
Discounted Cashflow Valuation: Basis for Approach

\[\text{Value} = \sum_{t=1}^{n} \frac{CF_t}{(1+r)^t} \]

where \(CF_t \) is the cash flow in period \(t \), \(r \) is the discount rate appropriate given the riskiness of the cash flow and \(t \) is the life of the asset.

Proposition 1: For an asset to have value, the expected cash flows have to be positive some time over the life of the asset.

Proposition 2: Assets that generate cash flows early in their life will be worth more than assets that generate cash flows later; the latter may however have greater growth and higher cash flows to compensate.
Equity Valuation versus Firm Valuation

- Value just the equity stake in the business
- Value the entire business, which includes, besides equity, the other claimholders in the firm
I. Equity Valuation

- The value of equity is obtained by discounting expected cashflows to equity, i.e., the residual cashflows after meeting all expenses, tax obligations and interest and principal payments, at the cost of equity, i.e., the rate of return required by equity investors in the firm.

\[
\text{Value of Equity} = \sum_{t=1}^{t=n} \frac{\text{CF to Equity}_t}{(1 + k_e)^t}
\]

where,

- \(\text{CF to Equity}_t = \) Expected Cashflow to Equity in period \(t \)
- \(k_e = \) Cost of Equity

- The dividend discount model is a specialized case of equity valuation, and the value of a stock is the present value of expected future dividends.
II. Firm Valuation

The value of the firm is obtained by discounting expected cashflows to the firm, i.e., the residual cashflows after meeting all operating expenses and taxes, but prior to debt payments, at the weighted average cost of capital, which is the cost of the different components of financing used by the firm, weighted by their market value proportions.

\[
\text{Value of Firm} = \sum_{t=1}^{t=n} \frac{\text{CF to Firm}_t}{(1 + \text{WACC})^t}
\]

where,

\[
\text{CF to Firm}_t = \text{Expected Cashflow to Firm in period } t
\]

\[
\text{WACC} = \text{Weighted Average Cost of Capital}
\]
Firm Value and Equity Value

To get from firm value to equity value, which of the following would you need to do?

- Subtract out the value of long term debt
- Subtract out the value of all debt
- Subtract the value of all non-equity claims in the firm, that are included in the cost of capital calculation
- Subtract out the value of all non-equity claims in the firm

Doing so, will give you a value for the equity which is

- greater than the value you would have got in an equity valuation
- lesser than the value you would have got in an equity valuation
- equal to the value you would have got in an equity valuation
Cash Flows and Discount Rates

Assume that you are analyzing a company with the following cashflows for the next five years.

<table>
<thead>
<tr>
<th>Year</th>
<th>CF to Equity</th>
<th>Int Exp (1-t)</th>
<th>CF to Firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$50</td>
<td>$40</td>
<td>$90</td>
</tr>
<tr>
<td>2</td>
<td>$60</td>
<td>$40</td>
<td>$100</td>
</tr>
<tr>
<td>3</td>
<td>$68</td>
<td>$40</td>
<td>$108</td>
</tr>
<tr>
<td>4</td>
<td>$76.2</td>
<td>$40</td>
<td>$116.2</td>
</tr>
<tr>
<td>5</td>
<td>$83.49</td>
<td>$40</td>
<td>$123.49</td>
</tr>
<tr>
<td>Terminal Value</td>
<td>$1603.0</td>
<td></td>
<td>$2363.008</td>
</tr>
</tbody>
</table>

Assume also that the cost of equity is 13.625% and the firm can borrow long term at 10%. (The tax rate for the firm is 50%.)

The current market value of equity is $1,073 and the value of debt outstanding is $800.
Equity versus Firm Valuation

Method 1: Discount CF to Equity at Cost of Equity to get value of equity

- Cost of Equity = 13.625%
- PV of Equity = \(rac{50}{1.13625} + \frac{60}{1.13625^2} + \frac{68}{1.13625^3} + \frac{76.2}{1.13625^4} + \frac{(83.49+1603)}{1.13625^5} = \$1073\)

Method 2: Discount CF to Firm at Cost of Capital to get value of firm

- Cost of Debt = Pre-tax rate (1- tax rate) = 10% (1-.5) = 5%
- WACC = 13.625% (1073/1873) + 5% (800/1873) = 9.94%
- PV of Firm = \(\frac{90}{1.0994} + \frac{100}{1.0994^2} + \frac{108}{1.0994^3} + \frac{116.2}{1.0994^4} + \frac{(123.49+2363)}{1.0994^5} = \$1873\)
- PV of Equity = PV of Firm - Market Value of Debt
 = \$1873 - \$800 = \$1073
First Principle of Valuation

- Never mix and match cash flows and discount rates.
- The key error to avoid is mismatching cashflows and discount rates, since discounting cashflows to equity at the weighted average cost of capital will lead to an upwardly biased estimate of the value of equity, while discounting cashflows to the firm at the cost of equity will yield a downward biased estimate of the value of the firm.
The Effects of Mismatching Cash Flows and Discount Rates

Error 1: Discount CF to Equity at Cost of Capital to get equity value

\[
PV \text{ of Equity} = \frac{50}{1.0994} + \frac{60}{1.0994^2} + \frac{68}{1.0994^3} + \frac{76.2}{1.0994^4} + \frac{(83.49+1603)}{1.0994^5} = \$1248
\]

Value of equity is overstated by $175.

Error 2: Discount CF to Firm at Cost of Equity to get firm value

\[
PV \text{ of Firm} = \frac{90}{1.13625} + \frac{100}{1.13625^2} + \frac{108}{1.13625^3} + \frac{116.2}{1.13625^4} + \frac{(123.49+2363)}{1.13625^5} = \$1613
\]

PV of Equity = $1612.86 - $800 = $813

Value of Equity is understated by $260.

Error 3: Discount CF to Firm at Cost of Equity, forget to subtract out debt, and get too high a value for equity

Value of Equity = $1613

Value of Equity is overstated by $540
Discounted Cash Flow Valuation: The Steps

- Estimate the **discount rate** or rates to use in the valuation
 - Discount rate can be either a cost of equity (if doing equity valuation) or a cost of capital (if valuing the firm)
 - Discount rate can be in nominal terms or real terms, depending upon whether the cash flows are nominal or real
 - Discount rate can vary across time.
- Estimate the **current earnings** and **cash flows** on the asset, to either equity investors (CF to Equity) or to all claimholders (CF to Firm)
- Estimate the **future earnings and cash flows** on the firm being valued, generally by estimating an expected growth rate in earnings.
- Estimate **when** the firm will reach “**stable growth**” and what characteristics (risk & cash flow) it will have when it does.
- Choose the **right DCF model** for this asset and value it.
Generic DCF Valuation Model

DISCOUNTED CASHFLOW VALUATION

- **Cash flows**
 - Firm: Pre-debt cash flow
 - Equity: After debt cash flows

- **Expected Growth**
 - Firm: Growth in Operating Earnings
 - Equity: Growth in Net Income/EPS

- **Value**
 - Firm: Value of Firm
 - Equity: Value of Equity

- **Discount Rate**
 - Firm: Cost of Capital
 - Equity: Cost of Equity

- **Terminal Value**
 - Firm is in stable growth: Grows at constant rate forever

- **Length of Period of High Growth**

- **Forever**
EQUITY VALUATION WITH DIVIDENDS

Dividends
- Net Income
- * Payout Ratio
 = Dividends

Expected Growth
- Retention Ratio *
 Return on Equity

Firm is in stable growth:
- Grows at constant rate
 forever

Terminal Value = \(\frac{\text{Dividend}_{n+1}}{(r_e - g_n)} \)

Discount at Cost of Equity

Cost of Equity

Riskfree Rate:
- No default risk
- No reinvestment risk
- In same currency and
 in same terms (real or
 nominal as cash flows

Beta
- Measures market risk

Risk Premium
- Premium for average
 risk investment

Type of Business
Operating Leverage
Financial Leverage
Base Equity Premium
Country Risk Premium

Aswath Damodaran
EQUITY VALUATION WITH FCFE

Cashflow to Equity
Net Income
- (Cap Ex - Depr) (1- DR)
- Change in WC (!-DR)
= FCFE

Expected Growth
Retention Ratio * Return on Equity

Firm is in stable growth:
Grows at constant rate forever

Terminal Value:
\[\frac{FCFE_{n+1}}{(ke - gn)} \]

Value of Equity
FCFE1, FCFE2, FCFE3, FCFE4, FCFE5, FCFE6,, FCFEn

Discount at Cost of Equity

Cost of Equity

Riskfree Rate:
- No default risk
- No reinvestment risk
- In same currency and in same terms (real or nominal as cash flows)

Beta
- Measures market risk

Risk Premium
- Premium for average risk investment

Type of Business
Operating Leverage
Financial Leverage
Base Equity Premium
Country Risk Premium

Aswath Damodaran
VALUING A FIRM

Cashflow to Firm
EBIT (1-t)
- (Cap Ex - Depr)
- Change in WC
= FCFF

Expected Growth
Reinvestment Rate
* Return on Capital

Firm is in stable growth:
Grows at constant rate forever

Terminal Value = \(\frac{FCFF_{n+1}}{(r-g_n)} \)

\(FCFF_1 \) \(FCFF_2 \) \(FCFF_3 \) \(FCFF_4 \) \(FCFF_5 \) \(\ldots \) \(FCFF_n \)

Value of Operating Assets + Cash & Non-op Assets = Value of Firm - Value of Debt = Value of Equity

Cost of Equity

Cost of Debt
(Riskfree Rate + Default Spread) (1-t)

Weights
Based on Market Value

Discount at WACC = Cost of Equity (Equity/(Debt + Equity)) + Cost of Debt (Debt/(Debt+ Equity))

Riskfree Rate:
- No default risk
- No reinvestment risk
- In same currency and in same terms (real or nominal as cash flows

Risk Premium:
- Premium for average risk investment

Beta:
- Measures market risk

Type of Business
Operating Leverage
Financial Leverage
Base Equity Premium
Country Risk Premium